主页 > 百科知识 > 多项式分解留数法具体公式

多项式分解留数法具体公式

时间:2025-01-08 18:57:02 浏览量:

留数定理公式:f(z)=1/[z·(z-1)²] 。在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推广。

在计算柯西分布的特征函数时会出现,用初等的微积分是不可能把它计算出来的。把这个积分表示成一个路径积分的极限,积分路径为沿着实直线从−a到a,然后再依逆时针方向沿着以0为中心的半圆从a到−a。取a为大于1,使得虚数单位i包围在曲线里面。

比如,f(z)=1/[z·(z-1)²]

求:1.res[f(z),0]2.res[f(z),1]

1.把f(z)在圆环域:0<|z|<1内展开成洛朗级数:

f(z)=1/z·1/(z-1)²=1/z·(1+2z+3z²+……)

展开式的C(-1)=1

所以,res[f(z),0]=1

2.把f(z)在圆环域:0<|z-1|<1内展开成洛朗级数:

f(z)=1/(z-1)²·1/[1+(z-1)]

=1/(z-1)²·[1-(z-1)+(z-1)²-(z-1)³+……]

展开式的C(-1)=-1

所以,res[f(z),1]=-1

留数是复变函数中的一个重要概念,指解析函数沿着某一圆环域内包围某一孤立奇点的任一正向简单闭曲线的积分值除以2πi。留数数值上等于解析函数的洛朗展开式中负一次幂项的系数。根据孤立奇点的不同,采用不同的留数计算方法。留数常应用在某些特殊类型的实积分中,从而大大简化积分的计算过程。

© 转乾企业管理-上海店铺装修报建公司 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)