主页 > 百科知识 > 样本均值的方差怎么算

样本均值的方差怎么算

时间:2024-11-30 01:31:55 浏览量:

步骤/方式1

样本均值期望和样本均值方差推导:

E(X把)=E(1/n∑Xi)=1/nE(∑Xi)=1/n∑E(Xi)=(1/n)nμ=μ。

D(X把)=D(1/n∑Xi)=1/n²D(∑Xi)=1/n²∑D(Xi)=(1/n²)nσ²=σ²/n。

要算样本均值,必有样本。X1,X2,...Xn是样本。

步骤/方式2

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

回答于 2021-02-06。

© 转乾企业管理-上海店铺装修报建公司 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)