主页 > 百科知识 > 数学的排列组合公式C n

数学的排列组合公式C n

时间:2024-11-30 00:59:41 浏览量:

数学中的排列组合是一种常见的数学概念,在组合中,C(n,m)表示从n个元素中选择m个元素的组合数,其计算公式是C(n,m)=n!/[m!(n-m)!]。其中,n!表示n的阶乘,即n×(n-1)×(n-2)×...×2×1。阶乘的含义是将所有小于等于n的正整数相乘,例如5!=5×4×3×2×1=120。组合数C(n,m)的计算公式可以通过推导得出,它可以用来计算在给定的元素集合中选择特定数量的元素的不同方式的数量。组合数在数学、计算机科学、物理学、统计学等领域中都有广泛应用。

一、排列组合定义

从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

二、排列组合公式

A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!

C-Combination 组合数

A-Arrangement 排列数

n-元素的总个数

m-参与选择的元素个数

!-阶乘

三、排列组合基本计数原理

加法原理与分布计数法

1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

乘法原理与分布计数法

1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

2、合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

© 转乾企业管理-上海店铺装修报建公司 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)