主页 > 百科知识 > 圆内接四边形定理

圆内接四边形定理

时间:2024-11-29 20:20:06 浏览量:

圆内接四边形的性质总结是:

1、圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°。

2、圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC。

3、圆心角的度数等于所对弧的圆周角的度数的两倍:∠AOB=2∠ACB=2∠ADB。

4、同弧所对的圆周角相等:∠ABD=∠ACD。

5、圆内接四边形对应三角形相似:△ABP∽△DCP(三个内角对应相等)。

直线和圆位置关系:

①直线和圆无公共点,称相离。 AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个公共点叫做切点。圆心与切点的连线垂直于切线。AB与⊙O相切,d=r。

© 转乾企业管理-上海店铺装修报建公司 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)