主页 > 百科知识 > 奔驰定理的推导

奔驰定理的推导

时间:2024-12-10 02:07:01 浏览量:

奔驰定理,因其几何表示酷似奔驰的标志得来,具体内容如下:有△ABC,点p为该三角形内的一点(在三角形边上为定比分点公式)。那么则有SA·PA + SB·PB + SC·PC =0,其中:SA为△BCP的面积,SB为△ACP的面积,SC为△ABP的面积。

这个也很好证明的,简单的一个就是面积法。用三角形面积公式带入,约去三条线段长度之积,得到三个单位向量的关系,将它们放入单位圆中。只需要建立平面直角坐标系,利用三角函数定义、三角恒等变换公式、向量坐标运算就可以轻松证明了。

扩展资料

“奔驰定理”可以称得上是平面向量中最优美的一个结论,由于这个定理和奔驰的logo很相似,人们把它称为奔驰定理。

奔驰定理是有关三角形四心向量式的完美统一表示,尤其在解决与三角形的四心相关的问题时有着决定性的基石作用;涉及数量积的取值范围或最值时,利用"极化公式"可将多变量问题,转变为单变量问题,再用数形结合等方法求解。

TAG: 奔驰定理

© 转乾企业管理-上海店铺装修报建公司 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)